在数据分析之前,我们通常需要先将数据标准化(normalization),数据标准化也就是统计数据的指数化。
数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。
数据标准化的方法有很多种,常用的有“最小—最大标准化”、“Z-score标准化”、“极大值标准化”和“总和标准化”等。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。
一、Min-max 标准化
min-max标准化方法是对原始数据进行线性变换。设minA和maxA分别为属性A的最小值和最大值,将A的一个原始值x通过min-max标准化映射成在区间[0,1]中的值x',其公式为:
新数据=(原数据-最小值)/(最大值-最小值)
二、z-score 标准化
这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。将A的原始值x使用z-score标准化到x'。
z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
新数据=(原数据-均值)/标准差
spss默认的标准化方法就是z-score标准化。
用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。
步骤如下:
1.求出各变量(指标)的算术平均值(数学期望)xi和标准差si ;
2.进行标准化处理:
zij=(xij-xi)/si
其中:zij为标准化后的变量值;xij为实际变量值。
3.将逆指标前的正负号对调。
标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。
三、极大值标准化
新数据=原数据/原数据中的最大值
四、总和标准化
新数据=原数据/原数据之和
数据标准建设方案
亿信华辰旗下的EsDataStandard数据标准管理平台,可以有效的帮助企业建立规范的数据应用标准,消除数据的不一致性,从根本上改善和解决系统的数据质量问题,实现数据有效共享,并通过智能化的管理方法,让企业轻松享受大数据带来的便利和效益。
1.内置标准一键应用
平台内置一批国标、行标,可一键应用大大提高项目交付效率。另外平台内置标准的技术、业务、管理、质量属性,结合灵活的定义方式,从手工创建、导入、拾取、智能识别等,可帮助客户快速构建基础标准、指标标准、代码标准。
2.智能追踪标准历史
平台支持标准增、删、改、查、发布、审核等各种基础操作,其变更过程能被自动记录,通过变更版本控制,追踪标准历史。另外平台还提供了灵活细致的用户权限管理机制,满足不同用户管理各自的标准的场景。
3.可视化的界面一目了然
实现数据从创建到消亡全生命周期的可视化,数据标准的建立也是完全可视的,并且实现全角色的可视化,不管是执行层还是决策层都可对数据标准的完善起到关键作用。
EsDataStandard数据标准管理平台包括:标准分类管理、标准增删改查、标准导入导出、标准评审、标准发布、标准版本管理、标准落地映射、标准落地评估、标准监控等功能。同时为更好的保障数据标准的落地,最好结合元数据管理工具一起使用。
“书同文、车同轨”的要求古已有之,而数字化时代的标准规范中,数据标准化无疑是重要根基之一。如果你已经非常明确自家数据体系存在数据病症,急缺一个可以妙手回春的良医的话,EsDataStandard数据标准管理平台一定是一个非常明智的选择。