word输入矩阵(Word2vec详解附NLP数据集)

1、什么是 Word2vec? 在聊 Word2vec 之前,先聊聊 NLP (自然语言处理)。NLP 里面,最细粒度的是 词语,词语组成句子,句子再组成段落、篇章、文档。所以处理 NLP 的问题,首先就要拿词语开刀。...

1、什么是 Word2vec?

在聊 Word2vec 之前,先聊聊 NLP (自然语言处理)。NLP 里面,最细粒度的是 词语,词语组成句子,句子再组成段落、篇章、文档。所以处理 NLP 的问题,首先就要拿词语开刀。

举个简单例子,判断一个词的词性,是动词还是名词。用机器学习的思路,我们有一系列样本(x,y),这里 x 是词语,y 是它们的词性,我们要构建 f(x)->y 的映射,但这里的数学模型 f(比如神经网络、SVM)只接受数值型输入,而 NLP 里的词语,是人类的抽象总结,是符号形式的(比如中文、英文、拉丁文等等),所以需要把他们转换成数值形式,或者说——嵌入到一个数学空间里,这种嵌入**,就叫词嵌入(word embedding),而 Word2vec,就是词嵌入( word embedding) 的一种。

我在前作『都是套路: 从上帝视角看透时间序列和数据挖掘』提到,大部分的有监督机器学习模型,都可以归结为:

f(x)->y

在 NLP 中,把 x 看做一个句子里的一个词语,y 是这个词语的上下文词语,那么这里的 f,便是 NLP 中经常出现的『语言模型』(language model),这个模型的目的,就是判断 (x,y) 这个样本,是否符合自然语言的法则,更通俗点说就是:词语x和词语y放在一起,是不是人话。

Word2vec 正是来源于这个思想,但它的最终目的,不是要把 f 训练得多么完美,而是只关心模型训练完后的副产物——模型参数(这里特指神经网络的权重),并将这些参数,作为输入 x 的某种向量化的表示,这个向量便叫做——词向量(这里看不懂没关系,下一节我们详细剖析)。

我们来看个例子,如何用 Word2vec 寻找相似词:

对于一句话:『她们 夸 吴彦祖 帅 到 没朋友』,如果输入 x 是『吴彦祖』,那么 y 可以是『她们』、『夸』、『帅』、『没朋友』这些词

现有另一句话:『她们 夸 我 帅 到 没朋友』,如果输入 x 是『我』,那么不难发现,这里的上下文 y 跟上面一句话一样

从而 f(吴彦祖) = f(我) = y,所以大数据告诉我们:我 = 吴彦祖(完美的结论)

2、Skip-gram 和 CBOW 模型

上面我们提到了语言模型

如果是用一个词语作为输入,来预测它周围的上下文,那这个模型叫做『Skip-gram 模型』

而如果是拿一个词语的上下文作为输入,来预测这个词语本身,则是 『CBOW 模型』

Skip-gram 和 CBOW 的简单情形

我们先来看个最简单的例子。上面说到, y 是 x 的上下文,所以 y 只取上下文里一个词语的时候,语言模型就变成:

用当前词 x 预测它的下一个词 y

但如上面所说,一般的数学模型只接受数值型输入,这里的 x 该怎么表示呢? 显然不能用 Word2vec,因为这是我们训练完模型的产物,现在我们想要的是 x 的一个原始输入形式。

答案是:one-hot encoder

所谓 one-hot encoder,其思想跟特征工程里处理类别变量的 one-hot 一样(参考我的前作『数据挖掘比赛通用框架』、『深挖One-hot和Dummy背后的玄机』)。本质上是用一个只含一个 1、其他都是 0 的向量来唯一表示词语。

我举个例子,假设全世界所有的词语总共有 V 个,这 V 个词语有自己的先后顺序,假设『吴彦祖』这个词是第1个词,『我』这个单词是第2个词,那么『吴彦祖』就可以表示为一个 V 维全零向量、把第1个位置的0变成1,而『我』同样表示为 V 维全零向量、把第2个位置的0变成1。这样,每个词语都可以找到属于自己的唯一表示。

OK,那我们接下来就可以看看 Skip-gram 的网络结构了,x 就是上面提到的 one-hot encoder 形式的输入,y 是在这 V 个词上输出的概率,我们希望跟真实的 y 的 one-hot encoder 一样。

Word2vec详解 | 附NLP数据集

首先说明一点:隐层的激活函数其实是线性的,相当于没做任何处理(这也是 Word2vec 简化之前语言模型的独到之处),我们要训练这个神经网络,用反向传播算法,本质上是链式求导,在此不展开说明了,

当模型训练完后,最后**的其实是神经网络的权重,比如现在输入一个 x 的 one-hot encoder: [1,0,0,…,0],对应刚说的那个词语『吴彦祖』,则在输入层到隐含层的权重里,只有对应 1 这个位置的权重被激活,这些权重的个数,跟隐含层节点数是一致的,从而这些权重组成一个向量 vx 来表示x,而因为每个词语的 one-hot encoder 里面 1 的位置是不同的,所以,这个向量 vx 就可以用来唯一表示 x。

注意:上面这段话说的就是 Word2vec 的精髓!!

此外,我们刚说了,输出 y 也是用 V 个节点表示的,对应V个词语,所以其实,我们把输出节点置成 [1,0,0,…,0],它也能表示『吴彦祖』这个单词,但是激活的是隐含层到输出层的权重,这些权重的个数,跟隐含层一样,也可以组成一个向量 vy,跟上面提到的 vx 维度一样,并且可以看做是词语『吴彦祖』的另一种词向量。而这两种词向量 vx 和 vy,正是 Mikolov 在论文里所提到的,『输入向量』和『输出向量』,一般我们用『输入向量』。

需要提到一点的是,这个词向量的维度(与隐含层节点数一致)一般情况下要远远小于词语总数 V 的大小,所以 Word2vec 本质上是一种降维操作——把词语从 one-hot encoder 形式的表示降维到 Word2vec 形式的表示。

Skip-gram 更一般的情形

上面讨论的是最简单情形,即 y 只有一个词,当 y 有多个词时,网络结构如下:

Word2vec详解 | 附NLP数据集

可以看成是 单个x->单个y 模型的并联,cost function 是单个 cost function 的累加(取log之后)

如果你想深入探究这些模型是如何并联、 cost function 的形式怎样,不妨仔细阅读参考资料4. 在此我们不展开。

CBOW 更一般的情形

跟 Skip-gram 相似,只不过:

Skip-gram 是预测一个词的上下文,而 CBOW 是用上下文预测这个词

网络结构如下:

Word2vec详解 | 附NLP数据集

更 Skip-gram 的模型并联不同,这里是输入变成了多个单词,所以要对输入处理下(一般是求和然后平均),输出的 cost function 不变,在此依然不展开,建议你阅读参考资料4.

3、Word2vec 的训练trick

相信很多初次踩坑的同学,会跟我一样陷入 Mikolov 那篇论文(参考资料1.)里提到的 hierarchical softmax 和 negative sampling 里不能自拔,但其实,它们并不是 Word2vec 的精髓,只是它的训练**,但也不是它独有的训练**。 Hierarchical softmax 只是 softmax 的一种近似形式(详见参考资料7.),而 negative sampling 也是从其他方法借鉴而来。

为什么要用训练**呢? 如我们刚提到的,Word2vec 本质上是一个语言模型,它的输出节点数是 V 个,对应了 V 个词语,本质上是一个多分类问题,但实际当中,词语的个数非常非常多,会给计算造成很大困难,所以需要用**来加速训练。

这里我总结了一下这两个 trick 的本质,有助于大家更好地理解,在此也不做过多展开,有兴趣的同学可以深入阅读参考资料1.~7.

hierarchical softmax

本质是把 N 分类问题变成 log(N)次二分类

negative sampling

本质是预测总体类别的一个子集

4、扩展

很多时候,当我们面对林林总总的模型、方法时,我们总希望总结出一些本质的、共性的东西,以构建我们的知识体系,比如我在前作『分类和回归的本质』里,原创性地梳理了分类模型和回归模型的本质联系,比如在词嵌入领域,除了 Word2vec之外,还有基于共现矩阵分解的 GloVe 等等词嵌入方法。

深入进去我们会发现,神经网络形式表示的模型(如 Word2vec),跟共现矩阵分解模型(如 GloVe),有理论上的相通性,这里我推荐大家阅读参考资料5. ——来斯惟博士在它的博士论文附录部分,证明了 Skip-gram 模型和 GloVe 的 cost fucntion 本质上是一样的。是不是一个很有意思的结论? 所以在实际应用当中,这两者的差别并不算很大,尤其在很多 high-level 的 NLP 任务(如句子表示、命名体识别、文档表示)当中,经常把词向量作为原始输入,而到了 high-level 层面,差别就更小了。

鉴于词语是 NLP 里最细粒度的表达,所以词向量的应用很广泛,既可以执行词语层面的任务,也可以作为很多模型的输入,执行 high-level 如句子、文档层面的任务,包括但不限于:计算相似度、寻找相似词、信息检索、作为 SVM/LSTM 等模型的输入、中文分词、命名体识别、句子表示、情感**、文档表示、文档主题判别

今天小七妹给大家分享一下自然语言处理可能用到的数据集,感兴趣的小伙伴可以收藏,以备不时之需。

Word2vec详解 | 附NLP数据集

以上是部分数据集,限于篇幅,完整版及链接可在下方评论区回复“”NLP数据集",**完整版数据集!

  • 发表于 2022-11-26 13:47:02
  • 阅读 ( 182 )
  • 分类:科技

0 条评论

请先 登录 后评论
jingpi
jingpi

569 篇文章

你可能感兴趣的文章

相关问题