sin60度是多少(sin60数学公式)
数学作为解决各种学科问题的重要工具,与人类的工作和生活密切相关。它已经渗透到人类工作和生活的方方面面。没有数学,我们无法想象人类的工作和生活会有多混乱,可以说是“寸步难行”。数学在人类的工作和生活中起着重要的作用。同样,在石材制品的生产加工中,也要应用数学知识和基本定理来解决生产加工中的一些问题。没有这些知识和基本定理,我们就无法做好产品加工。石材加工有什么样的数学知识和基本定理? *** 人员是否必须掌握并熟练运用石材?
1.勾股定理
这个定理在石材制品加工中是之一个也是不可或缺的。
勾股定理表达式:c2=a2+b2
图1
勾股定理常用于石材加工中矩形板对角线的计算。比如切割一个长1000mm,宽800mm的矩形板,对角线长度由勾股定理得到。
图2
2.必须知道的几个三角函数基本公式?
三角函数的基本公式
SinA=a/c,sinB=b/c,tgA=a/b,ctgA=b/a .tgA *ctgA=1 .
c是直角三角形的斜边,A是∠ A的对边,B是∠A的邻边。
图3
3.弦长和圆心角的计算公式
长度B=2Rsinθ/2。(θ为圆心角,R为圆的半径)。
θ=2arcsinB/2R .
该公式对计算圆弧板和圆弧异形板的弦长极为有用。一般生产工人背熟应用后,就可以自己计算了。
如果生产加工一个圆心角θ = 60,半径R500的扇形板,至少需要多大尺寸的材料才能加工出图4所示的产品。
根据公式计算弦长
b = 2 rsinθ/2 = 2 * 500 * sin(60/2)= 1000 * sin 30 = 1000 * 1/2 = 500 .
所以下料尺寸不能小于500mm*500mm。
记住几种常见角度的三角函数,在石材制品加工中很常见。
sin 60 = sin 120 =√3/2 = 0.866;sin 30 = sin 150 = 1/2;sin 45 = sin 135 =√2/2 = 0.707;sin 90 = 1;
图4
4.余弦定理
余弦表达式:c2=a2+b2-2abcosC
如果一个客户要加工一个边长为800,900,600的三角形板材, *** 这个异形板材的生产人员在加工这个异形板材之前,就要计算出三角形A,B,C的两个角。
利用余弦定理,分别求出三角形的三个角A、B、C。
在不影响计算结果的情况下,可以假设a=800,b=900,c=600。
602 = 8002+9002-2 * 800 * 900 COSC,由此cosC=0.7569,C = 41
902 = 8002+6002-2 * 800 * 600 co *** ,从而得到cosB=0.1979,b = 78.6
通过使用三角形的三个角之和作为180°来计算角度α,
A=180 -78.6 -41 =60.4 .